Learning + Synthesis

Armando Solar-Lezama
ML as Synthesis

Learning
ML as Synthesis

Structure

Synth

Prog

PBE
Synthesis as ML

Structure

Quantitative Objectives

Learning

Synth

Prog
Techniques

PL
- Formal reasoning
- Deduction
- Structure
- Modularity
- Abstraction
- Compositionality

\[
\frac{\Gamma \vdash e_1 \quad \Gamma \vdash e_2}{\Gamma \vdash e_1 + e_2}
\quad
\frac{\Gamma \vdash x = e}{\text{fold}(_ _ _)}
\quad
\frac{\text{map}(_ _ _)}{\text{cons}(_ _)}
\]

ML
- Optimization
- Probability
Smooth Interpretation

Swarat Chaudhuri and Armando Solar-Lezama, PLDI 2010

if(x > 0)
 false
 true
Smooth Interpretation

Swarat Chaudhuri and Armando Solar-Lezama, PLDI 2010
Error function
Error function
Error function
Error function
Excessive merging can cause problems
Synthesis with numerical optimization + SAT

Jeevana Inala, Sean Gao, Soonho Kong, Armando Solar-Lezama arXiv 2017
A Simple Example
A simple example

```java
box obs1 = ... // stationary car 1
box obs2 = ... // stationary car 2
world wld = new world(n= 2, obstacles = {obs1, obs2});

// your car
car c = new car(...);

float dt = 0.1;

print(c);
for(int i=0; i<100; ++i){
    controller(c);
    simulate(c, dt);
    detectCollision(c, wld);
    checkCar(c);
    print(c);
}

assert reachGoal(c);
```
A simple example

```c
void controller(car c) {
    float v = ??;
    float x1 = ??; float x2 = ??; float x3 = ??;
    checkSwitch(x1); checkSwitch(x2); checkSwitch(x3);
    if (c.b.xb > x1) {
        c.v = v;
        c.ang = 0.0;
    } else if (c.b.xb > x2) {
        c.v = v;
        c.ang = ??;
    } else if (c.b.xb > x3) {
        c.v = v;
        c.ang = ??;
    } else {
        c.v = 0.0;
    }
}
```
A simple example

```c
void simulate(car c, float dt){
    float YL = c.b.yf - c.b.yb;
    float XL = c.b.xf - c.b.xb;
    float H = sqrt(YL*YL + XL*XL);
    float coa = (XL/H);
    float sia = (YL/H);
    float DY = c.v*dt*(sin(c.ang)*coa + cos(c.ang)*sia);
    float DX = c.v*dt*(cos(c.ang)*coa - sin(c.ang)*sia);

    c.b.xf += DX;
    c.b.yf += DY;
    float tt = (DX + XL)* coa + (DY + YL)*sia;
    float q = tt
        - 0.5*sqrt(4.0*(tt*tt) - 4.0*(DX*DX + 2.0*DX*XL + DY*(DY + 2.0*YL)));
    c.b.xb += q*coa;
    c.b.yb += q*sia;
}
```
A simple example

```c
void detectCollision(car c, world w){
for (int i = 0; i < w.n; i++) {
  box o = w.obstacles[i];
  detectCollisionWithObject(c.b, o);
}
}

void detectCollisionWithObject(box o1, box o2) {
  // make sure that vertices of o1 are not inside o2
  float[8] vertices = getVertices(o1);
  for (int i = 0; i < 4; i++) {
    assert(!isInside(vertices[2*i], vertices[2*i+1], o2));
  }
  // make sure that vertices of o2 are not inside o1
  vertices = getVertices(o2);
  for (int i = 0; i < 4; i++) {
    assert(!isInside(vertices[2*i], vertices[2*i+1], o1));
  }
}
```
A simple example
Solver performance

Solution times for different benchmarks

None of these benchmarks can be solved with previous SMT solvers!
Solver performance

Comparison with numerical optimization

Lane Change Quad Obstacle Quad Landing Benchmark Parallel Park Thermostat
Another Example

declare N control(int N, Segment[N] segs, double time)
 double[N] deltas;
 double ii = 0.0;
 for(int i=0; i<N; ++i){
 ii += 1.0;
 repeat(5){
 if(time < ??*Dt()){
 ? + ii*?? + segs[i].ang*??;
 }
 }
 }
 return deltas;
}
Smoothed Proof Search

Martin Clochard, Swarat Chaudhuri and Armando Solar-Lezama POPL 2014

if (B)
y = y - 10
y = y + 10
Smoothed Proof Search

Martin Clochard, Swarat Chaudhuri and Armando Solar-Lezama POPL 2014

if(B)

\[
\begin{align*}
&y = y - 10 \\
&y = y + 10 \\
\end{align*}
\]
Pipeline model

Spec → LM → Low-level synthesis problem → Synth → Prog
Pipeline model

High-level unstructured spec → ML → Low-level structured spec → Sk → Complete artifact
Learning to Infer Graphics Programs from Hand-Drawn Images

with Kevin Ellis, Daniel Ritchie, Josh Tenenbaum
From images to programs

Hand Drawn Figure

NN + Search

Description of elements in the drawing

Circle(5,8)
Circle(2,8)
Circle(8,11)
Line(2,9, 2,10)
Circle(8,8)
Line(3,8, 4,8)
Line(3,11, 4,11)
Line(8,9, 8,10)
Circle(5,14)
... etc. ...: 21 lines

Synthesis

Program representation of drawing

for(i<3)
for(j<3)
if(j>0)
 line(-3*j+8,-3*i+7, -3*j+9,-3*i+7)
 line(-3*i+7,-3*j+8, -3*i+7,-3*j+9)
circle(-3*j+7,-3*i+7)
From images to programs
Why? Correcting errors in perception
Why? Extrapolation
Synthesis for CAD

Tao Du, Adriana Schultz, Evan Pu, Jeevana Inala, Wojciech Matusik
Armando Solar-Lezama
(Submitted 2018)
Selecting Representative Examples for Synthesis

Selecting Representative Examples for Synthesis

full: add all examples
cegis: add “first” example
rcegis: add random example
acegis: add arbitrary example
rand+cegis: instantiate rcegis with a random subset of examples
ours: instantiate rcegis with subset of examples chosen by neural network
Learning a DSL

Domain Specific Language \(\mathcal{D} \) \(\theta \) Prior on the space of programs in the DSL

Requirement \(X = \{ x_i \} \)

\(\prod_{x \in X} \sum_p p[x|p] p[p|\mathcal{D}, \theta] \)

Kevin Ellis, Josh Tenenbaum, Lucas E. Morales in submission.
E-C Algorithm
Dechter, Malmaud, Adams, Tenenbaum: Bootstrap Learning via Modular Concept Discovery. IJCAI 2013

Exploration

Documentation of Equations:

\[x_1, x_2, x_3, x_4, x_5 \ldots \in X \]

\[p_1, p_2, p_3, p_4, p_5 \ldots \in (D_i) \]

Compression

\[p_1, p_2, p_3, p_4, p_5 \ldots \]

\[(D_{i+1}) \]
Learning a Recognition model

Deepcoder (Balog et.al. 2017)

\[D \xrightarrow{\theta(x)} \theta(x) \]

Domain Specific Language

Prior on the space of programs in the DSL

Recognition Model \(q(x) \)
New DreamCoder Algorithm

Wake

\[x_1, x_2, x_3, x_4, x_5 \ldots \in X \]

\[(\mathcal{D}_{i+1}, q_{i+1}(x_j)) \]

\[p_1, p_2, p_3, p_4, p_5 \ldots \]

Sleep

\[p_1, p_2, p_3, p_4, p_5 \ldots \]

\[\mathcal{D}_{i+1} \rightarrow q_{i+1} \]

\[(\mathcal{D}_{i+1}, q_{i+1}) \]
Results

<table>
<thead>
<tr>
<th>Tasks</th>
<th>List Functions</th>
<th>Text Editing</th>
<th>Symbolic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7 2 3] → [7 3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1 2 3 4] → [3 4]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4 3 2 1] → [4 3]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2 7 8 1] → 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3 19 14] → 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[7 3] → False</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] → False</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[9 0 0] → True</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0] → True</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0 7 3] → True</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+106 769-438 → 106.769438</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+83 973-831 → 83.973831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temple Anna H → TAH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lara Gregori → LG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

List Functions

Text Editing

Symbolic Regression

- Dreamcoder
- Without Recognition Model
Conclusion